Your browser doesn't support javascript.
loading
Morphological Evolution and Solid-Electrolyte Interphase Formation on LiNi0.6Mn0.2Co0.2O2 Cathodes Using Highly Concentrated Ionic Liquid Electrolytes.
Hasanpoor, Meisam; Saurel, Damien; Barreno, Rosalía Cid; Fraysse, Kilian; Echeverría, María; Jáuregui, Maria; Bonilla, Francisco; Greene, George W; Kerr, Robert; Forsyth, Maria; Howlett, Patrick C.
Afiliación
  • Hasanpoor M; Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
  • Saurel D; CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain.
  • Barreno RC; CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain.
  • Fraysse K; Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
  • Echeverría M; CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain.
  • Jáuregui M; CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain.
  • Bonilla F; CIC energiGUNE, Albert Einstein 48, Technology Park of Álava,, Vitoria-Gasteiz 01510, Spain.
  • Greene GW; Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
  • Kerr R; Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
  • Forsyth M; Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
  • Howlett PC; Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
ACS Appl Mater Interfaces ; 14(11): 13196-13205, 2022 Mar 23.
Article en En | MEDLINE | ID: mdl-35274926
Employing high-voltage Ni-rich cathodes in Li metal batteries (LMBs) requires stabilization of the electrode/electrolyte interfaces at both electrodes. A stable solid-electrolyte interphase (SEI) and suppression of active material pulverization remain the greatest challenges to achieving efficient long-term cycling. Herein, studies of NMC622 (1 mAh cm-2) cathodes were performed using highly concentrated N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (C3mpyrFSI) 50 mol % lithium bis(fluorosulfonyl)imide (LiFSI) ionic liquid electrolyte (ILE). The resulting SEI formed at the cathode enabled promising cycling performance (98.13% capacity retention after 100 cycles), and a low degree of ion mixing and lattice expansion was observed, even at an elevated temperature of 50 °C. Fitting of acquired impedance spectra indicated that the SEI resistivity (RSEI) had a low and stable contribution to the internal resistivity of the system, whereas active material pulverization and secondary grain isolation significantly increased the charge transfer resistance (RCT) throughout cycling.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos