Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation.
World J Mens Health
; 40(3): 526-535, 2022 Jul.
Article
en En
| MEDLINE
| ID: mdl-35274503
PURPOSE: During epididymal sperm maturation, spermatozoa acquire progressive motility through dynamic protein modifications. However, the relationship between sequential protein modifications during epididymal sperm maturation and sperm motility and fertility has not yet been investigated. This study investigated whether sequential changes in fertility-related protein expression including that of enolase 1 (ENO1), ubiquinol-cytochrome c reductase core protein 1 and 2 (UQCRC1 and UQCRC2), and voltage-dependent anion channel 2 (VDAC2) in spermatozoa during epididymal maturation are related to bovine sperm motility. Moreover, we found that mitochondrial metabolism is closely related to fertility-related proteins. Therefore, we investigated how the sequential modification of mitochondrial proteins during epididymal maturation regulates sperm motility. MATERIALS AND METHODS: To determine the differential protein expression in caput and cauda epididymal spermatozoa from low and high motility bulls, western blot analysis was performed. Moreover, signaling pathways were identified to understand the mechanisms of regulation of sperm motility through the differential protein expression associated with fertility-related proteins. RESULTS: We found that ENO1 was substantially higher in the caput spermatozoa from low motility bulls than the caput and cauda spermatozoa from high motility bulls. However, ENO1 expression in low motility bull spermatozoa was downregulated to a level comparable to that in the high motility bull spermatozoa during epididymal maturation. Moreover, there was a lack of modification of mitochondrial proteins, including glutathione peroxidase 4 and NADH:Ubiquinone Oxidoreductase Core Subunit S8, in low motility bull spermatozoa during epididymal maturation, whereas active changes were detected in high motility bull spermatozoa. CONCLUSIONS: Irregular modifications of mitochondrial proteins during epididymal sperm maturation may increase excessive ROS production and premature activation of spermatozoa during epididymal maturation. Consequently, spermatozoa may lose their motility by the earlier consumption of their energy source and may be damaged by ROS during epididymal maturation, resulting in a decline in sperm motility and bull fertility.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
World J Mens Health
Año:
2022
Tipo del documento:
Article
Pais de publicación:
Corea del Sur