Your browser doesn't support javascript.
loading
Targeting One- and Two-Dimensional Ta-Te Structures via Nanotube Encapsulation.
Stonemeyer, Scott; Dogan, Mehmet; Cain, Jeffrey D; Azizi, Amin; Popple, Derek C; Culp, Austin; Song, Chengyu; Ercius, Peter; Cohen, Marvin L; Zettl, Alex.
Afiliación
  • Stonemeyer S; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
  • Dogan M; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States.
  • Cain JD; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Azizi A; Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States.
  • Popple DC; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
  • Culp A; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Song C; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
  • Ercius P; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Cohen ML; Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States.
  • Zettl A; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
Nano Lett ; 22(6): 2285-2292, 2022 03 23.
Article en En | MEDLINE | ID: mdl-35271292
Fine control over material synthesis on the nanoscale can facilitate the stabilization of competing crystalline structures. Here, we demonstrate how carbon nanotube reaction vessels can be used to selectively create one-dimensional TaTe3 chains or two-dimensional TaTe2 nanoribbons with exquisite control of the chain number or nanoribbon thickness and width. Transmission electron microscopy and scanning transmission electron microscopy reveal the detailed atomic structure of the encapsulated materials. Complex superstructures such as multichain spiraling and apparent multilayer moirés are observed. The rare 2H phase of TaTe2 (1H in monolayer) is found to be abundant as an encapsulated nanoribbon inside carbon nanotubes. The experimental results are complemented by density functional theory calculations for the atomic and electronic structure, which uncovers the prevalence of 2H-TaTe2 due to nanotube-to-nanoribbon charge transfer and size confinement. Calculations also reveal new 1T' type charge density wave phases in TaTe2 that could be observed in experimental studies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanotubos de Carbono Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanotubos de Carbono Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos