The competing influence of surface roughness, hydrophobicity, and electrostatics on protein dynamics on a self-assembled monolayer.
J Chem Phys
; 156(9): 094707, 2022 Mar 07.
Article
en En
| MEDLINE
| ID: mdl-35259895
Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Chem Phys
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos