Rapid Multiplex Strip Test for the Detection of Circulating Tumor DNA Mutations for Liquid Biopsy Applications.
Biosensors (Basel)
; 12(2)2022 Feb 04.
Article
en En
| MEDLINE
| ID: mdl-35200357
In the era of personalized medicine, molecular profiling of patient tumors has become the standard practice, especially for patients with advanced disease. Activating point mutations of the KRAS proto-oncogene are clinically relevant for many types of cancer, including colorectal cancer (CRC). While several approaches have been developed for tumor genotyping, liquid biopsy has been gaining much attention in the clinical setting. Analysis of circulating tumor DNA for genetic alterations has been challenging, and many methodologies with both advantages and disadvantages have been developed. We here developed a gold nanoparticle-based rapid strip test that has been applied for the first time for the multiplex detection of KRAS mutations in circulating tumor DNA (ctDNA) of CRC patients. The method involved ctDNA isolation, PCR-amplification of the KRAS gene, multiplex primer extension (PEXT) reaction, and detection with a multiplex strip test. We have optimized the efficiency and specificity of the multiplex strip test in synthetic DNA targets, in colorectal cancer cell lines, in tissue samples, and in blood-derived ctDNA from patients with advanced colorectal cancer. The proposed strip test achieved rapid and easy multiplex detection (normal allele and three major single-point mutations) of the clinically relevant KRAS mutations in ctDNA in blood samples of CRC patients with high specificity and repeatability. This multiplex strip test represents a minimally invasive, rapid, low-cost, and promising diagnostic tool for the detection of clinically relevant mutations in cancer patients.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias Colorrectales
/
Nanopartículas del Metal
/
ADN Tumoral Circulante
Tipo de estudio:
Diagnostic_studies
Límite:
Humans
Idioma:
En
Revista:
Biosensors (Basel)
Año:
2022
Tipo del documento:
Article
País de afiliación:
Grecia
Pais de publicación:
Suiza