Impact of parylene coating on heating performance of intravenous fluid warmer: a bench study.
BMC Anesthesiol
; 22(1): 44, 2022 02 10.
Article
en En
| MEDLINE
| ID: mdl-35144541
BACKGROUND: Perioperative hypothermia is a common occurrence, particularly with the elderly and pediatric age groups. Hypothermia is associated with an increased risk of perioperative complications. One method of preventing hypothermia is warming the infused fluids given during surgery. The enFlow™ intravenous fluid warmer has recently been reintroduced with a parylene coating on its heating blocks. In this paper, we evaluated the impact of the parylene coating on the new enFlow's fluid warming capacity. METHODS: Six coated and six uncoated enFlow cartridges were used. A solution of 10% propylene glycol and 90% distilled H2O was infused into each heating cartridge at flow rates of 2, 10, 50, 150, and 200 ml/min. The infused fluid temperature was set at 4 °C, 20 °C, and 37 °C. Output temperature was recorded at each level. Data for analysis was derived from 18 runs at each flow rate (six cartridges at three temperatures). RESULTS: The parylene coated fluid warming cartridge delivered very stable output of 40 °C temperatures at flow rates of 2, 10, and 50 ml/min regardless of the temperature of the infusate. At higher flow rates, the cartridges were not able to achieve the target temperature with the colder fluid. Both cartridges performed with similar efficacy across all flow rates at all temperatures. CONCLUSIONS: At low flow rates, the parylene coated enFlow cartridges was comparable to the original uncoated cartridges. At higher flow rates, the coated and uncoated cartridges were not able to achieve the target temperature. The parylene coating on the aluminum heating blocks of the new enFlow intravenous fluid warmer does not negatively affect its performance compared to the uncoated model.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Polímeros
/
Xilenos
/
Administración Intravenosa
/
Calefacción
Límite:
Humans
Idioma:
En
Revista:
BMC Anesthesiol
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido