Prediction of Shunt Responsiveness in Suspected Patients With Normal Pressure Hydrocephalus Using the Lumbar Infusion Test: A Machine Learning Approach.
Neurosurgery
; 90(4): 407-418, 2022 04 01.
Article
en En
| MEDLINE
| ID: mdl-35080523
BACKGROUND: Machine learning (ML) approaches can significantly improve the classical Rout-based evaluation of the lumbar infusion test (LIT) and the clinical management of the normal pressure hydrocephalus. OBJECTIVE: To develop a ML model that accurately identifies patients as candidates for permanent cerebral spinal fluid shunt implantation using only intracranial pressure and electrocardiogram signals recorded throughout LIT. METHODS: This was a single-center cohort study of prospectively collected data of 96 patients who underwent LIT and 5-day external lumbar cerebral spinal fluid drainage (external lumbar drainage) as a reference diagnostic method. A set of selected 48 intracranial pressure/electrocardiogram complex signal waveform features describing nonlinear behavior, wavelet transform spectral signatures, or recurrent map patterns were calculated for each patient. After applying a leave-one-out cross-validation training-testing split of the data set, we trained and evaluated the performance of various state-of-the-art ML algorithms. RESULTS: The highest performing ML algorithm was the eXtreme Gradient Boosting. This model showed a good calibration and discrimination on the testing data, with an area under the receiver operating characteristic curve of 0.891 (accuracy: 82.3%, sensitivity: 86.1%, and specificity: 73.9%) obtained for 8 selected features. Our ML model clearly outperforms the classical Rout-based manual classification commonly used in clinical practice with an accuracy of 62.5%. CONCLUSION: This study successfully used the ML approach to predict the outcome of a 5-day external lumbar drainage and hence which patients are likely to benefit from permanent shunt implantation. Our automated ML model thus enhances the diagnostic utility of LIT in management.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Hidrocéfalo Normotenso
Tipo de estudio:
Diagnostic_studies
/
Etiology_studies
/
Guideline
/
Incidence_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Neurosurgery
Año:
2022
Tipo del documento:
Article
País de afiliación:
República Checa
Pais de publicación:
Estados Unidos