Your browser doesn't support javascript.
loading
Designing Ionic Liquids as the Solvent for Efficient and Stable Perovskite Solar Cells.
Gu, Lei; Ran, Chenxin; Chao, Lingfeng; Bao, Yaqi; Hui, Wei; Wang, Yue; Chen, Yonghua; Gao, Xingyu; Song, Lin.
Afiliación
  • Gu L; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Ran C; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Chao L; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Bao Y; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Hui W; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Wang Y; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Chen Y; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, Jiangsu China.
  • Gao X; Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China.
  • Song L; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
Article en En | MEDLINE | ID: mdl-35077147
As a green solvent, ionic liquids (ILs) are considered as a promising alternative to conventional polar aprotic solvents for the production of efficient and stable perovskite solar cells (PSCs). Moreover, with the use of IL solvents, perovskite films can be prepared without antisolvent treatments in an ambient environment instead of in a glovebox with inert gases, which simplifies the film manufacturing process and is favorable for industrialization production. However, the type of IL solvents that have been studied is limited, and the influence of IL molecular structures on the perovskite-film crystallization and device performance is not completely understood. In this work, four different ILs, methylammonium formate (MAF), methylammonium acetate (MAAc), methylammonium propionate (MAP), and mthylammonium isobutyrate (MAIB), are synthesized as the perovskite precursor solvents. The interaction between the functional groups of the synthesized solvents and Pb2+ in the precursor solution is studied, which has a direct impact on the morphology and crystallization of the deposited perovskite film. It is found that MAP solvent gives a high-quality perovskite film, which leads to the best photovoltaic performance with a champion PCE of 20.56% compared to the devices based on the other IL solvents. Moreover, the MAP-based device maintains 88% of its original PCE after 1000 h of storage in a N2 atmosphere, demonstrating excellent device stability. Therefore, it is concluded that MAP is the most suitable solvent for MAPbI3 films with respect to photovoltaic applications as compared to the other ILs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos