A review on AI in PET imaging.
Ann Nucl Med
; 36(2): 133-143, 2022 Feb.
Article
en En
| MEDLINE
| ID: mdl-35029818
Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image generation with deep learning has been investigated in studies using positron emission tomography (PET). This article reviews studies that applied deep learning techniques for image generation on PET. We categorized the studies for PET image generation with deep learning into three themes as follows: (1) recovering full PET data from noisy data by denoising with deep learning, (2) PET image reconstruction and attenuation correction with deep learning and (3) PET image translation and synthesis with deep learning. We introduce recent studies based on these three categories. Finally, we mention the limitations of applying deep learning techniques to PET image generation and future prospects for PET image generation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Inteligencia Artificial
/
Tomografía de Emisión de Positrones
Tipo de estudio:
Diagnostic_studies
Límite:
Humans
Idioma:
En
Revista:
Ann Nucl Med
Asunto de la revista:
MEDICINA NUCLEAR
Año:
2022
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Japón