Your browser doesn't support javascript.
loading
Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method.
Chen, Yao-Mei; Chou, Fu-I; Ho, Wen-Hsien; Tsai, Jinn-Tsong.
Afiliación
  • Chen YM; School of Nursing, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
  • Chou FI; Superintendent Office, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
  • Ho WH; Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
  • Tsai JT; Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. whho@kmu.edu.tw.
BMC Bioinformatics ; 22(Suppl 5): 615, 2022 Jan 11.
Article en En | MEDLINE | ID: mdl-35016610
BACKGROUND: Researchers have attempted to apply deep learning methods of artificial intelligence for rapidly and accurately detecting acute lymphoblastic leukemia (ALL) in microscopic images. RESULTS: A Resnet101-9 ensemble model was developed for classifying ALL in microscopic images. The proposed Resnet101-9 ensemble model combined the use of the nine trained Resnet-101 models with a majority voting strategy. Each trained Resnet-101 model integrated the well-known pre-trained Resnet-101 model and its algorithm hyperparameters by using transfer learning method to classify ALL in microscopic images. The best combination of algorithm hyperparameters for the pre-trained Resnet-101 model was determined by Taguchi experimental method. The microscopic images used for training of the pre-trained Resnet-101 model and for performance tests of the trained Resnet-101 model were obtained from the C-NMC dataset. In experimental tests of performance, the Resnet101-9 ensemble model achieved an accuracy of 85.11% and an F1-score of 88.94 in classifying ALL in microscopic images. The accuracy of the Resnet101-9 ensemble model was superior to that of the nine trained Resnet-101 individual models. All other performance measures (i.e., precision, recall, and specificity) for the Resnet101-9 ensemble model exceeded those for the nine trained Resnet-101 individual models. CONCLUSION: Compared to the nine trained Resnet-101 individual models, the Resnet101-9 ensemble model had superior accuracy in classifying ALL in microscopic images obtained from the C-NMC dataset.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Leucemia-Linfoma Linfoblástico de Células Precursoras Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Leucemia-Linfoma Linfoblástico de Células Precursoras Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Reino Unido