Your browser doesn't support javascript.
loading
Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes.
Hahn, Nathan T; Self, Julian; Driscoll, Darren M; Dandu, Naveen; Han, Kee Sung; Murugesan, Vijayakumar; Mueller, Karl T; Curtiss, Larry A; Balasubramanian, Mahalingam; Persson, Kristin A; Zavadil, Kevin R.
Afiliación
  • Hahn NT; Joint Center for Energy Storage Research, Lemont, IL, 60439, USA.
  • Self J; Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA. nthahn@sandia.gov.
  • Driscoll DM; Joint Center for Energy Storage Research, Lemont, IL, 60439, USA.
  • Dandu N; Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 60439, USA.
  • Han KS; Department of Materials Science and Engineering, UC Berkeley, CA 94720, USA.
  • Murugesan V; Joint Center for Energy Storage Research, Lemont, IL, 60439, USA.
  • Mueller KT; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Curtiss LA; Joint Center for Energy Storage Research, Lemont, IL, 60439, USA.
  • Balasubramanian M; Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Persson KA; Joint Center for Energy Storage Research, Lemont, IL, 60439, USA.
  • Zavadil KR; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Phys Chem Chem Phys ; 24(2): 674-686, 2022 Jan 04.
Article en En | MEDLINE | ID: mdl-34908060
Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido