Your browser doesn't support javascript.
loading
Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients-The SaMi-Trop cohort.
Brito, Bruno Oliveira de Figueiredo; Attia, Zachi I; Martins, Larissa Natany A; Perel, Pablo; Nunes, Maria Carmo P; Sabino, Ester Cerdeira; Cardoso, Clareci Silva; Ferreira, Ariela Mota; Gomes, Paulo R; Luiz Pinho Ribeiro, Antonio; Lopez-Jimenez, Francisco.
Afiliación
  • Brito BOF; Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Attia ZI; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.
  • Martins LNA; Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Perel P; Department of Statistics, Instituto de Ciência Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Nunes MCP; London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Sabino EC; Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Cardoso CS; Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
  • Ferreira AM; Federal University of São João del-Rei, Divinópolis, Brazil.
  • Gomes PR; Graduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil.
  • Luiz Pinho Ribeiro A; Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Lopez-Jimenez F; Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
PLoS Negl Trop Dis ; 15(12): e0009974, 2021 12.
Article en En | MEDLINE | ID: mdl-34871321
BACKGROUND: Left ventricular systolic dysfunction (LVSD) in Chagas disease (ChD) is relatively common and its treatment using low-cost drugs can improve symptoms and reduce mortality. Recently, an artificial intelligence (AI)-enabled ECG algorithm showed excellent accuracy to detect LVSD in a general population, but its accuracy in ChD has not been tested. OBJECTIVE: To analyze the ability of AI to recognize LVSD in patients with ChD, defined as a left ventricular ejection fraction determined by the Echocardiogram ≤ 40%. METHODOLOGY/PRINCIPAL FINDINGS: This is a cross-sectional study of ECG obtained from a large cohort of patients with ChD named São Paulo-Minas Gerais Tropical Medicine Research Center (SaMi-Trop) Study. The digital ECGs of the participants were submitted to the analysis of the trained machine to detect LVSD. The diagnostic performance of the AI-enabled ECG to detect LVSD was tested using an echocardiogram as the gold standard to detect LVSD, defined as an ejection fraction <40%. The model was enriched with NT-proBNP plasma levels, male sex, and QRS ≥ 120ms. Among the 1,304 participants of this study, 67% were women, median age of 60; there were 93 (7.1%) individuals with LVSD. Most patients had major ECG abnormalities (59.5%). The AI algorithm identified LVSD among ChD patients with an odds ratio of 63.3 (95% CI 32.3-128.9), a sensitivity of 73%, a specificity of 83%, an overall accuracy of 83%, and a negative predictive value of 97%; the AUC was 0.839. The model adjusted for the male sex and QRS ≥ 120ms improved the AUC to 0.859. The model adjusted for the male sex and elevated NT-proBNP had a higher accuracy of 0.89 and an AUC of 0.874. CONCLUSION: The AI analysis of the ECG of Chagas disease patients can be transformed into a powerful tool for the recognition of LVSD.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedad de Chagas / Disfunción Ventricular Izquierda / Electrocardiografía Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do sul / Brasil Idioma: En Revista: PLoS Negl Trop Dis Asunto de la revista: MEDICINA TROPICAL Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedad de Chagas / Disfunción Ventricular Izquierda / Electrocardiografía Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do sul / Brasil Idioma: En Revista: PLoS Negl Trop Dis Asunto de la revista: MEDICINA TROPICAL Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos