Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS-Induced Signals.
Adv Healthc Mater
; 11(8): e2102271, 2022 04.
Article
en En
| MEDLINE
| ID: mdl-34855279
Macrophages settle in heterogeneous microenvironments rendered by other cells and extracellular matrices. It is well known that chemical stimuli direct macrophage behavior; however, the contributions of viscosity, which increases in inflammatory tissues but not in tumors, are ignored in immune responses including effective activation and timely attenuation. This paper demonstrates that transient lipopolysaccharide (LPS)-treated macrophages benefit from elastic substrates, whereas viscoelastic substrates with similar storage moduli support the inflammatory responses of macrophages under persistent stimulations and consequently amplify the distinctions between the transient and persistent LPS-induced transcriptional programs. Actin filaments (F-actin) fluctuate in line with transcriptional profiles and can be mathematically predicted by a clutch-like model. Moreover, viscosity modifies immune responses through transcription factors NF-κB and C/EBPδ, which act as switches discriminating transient and persistent infections. Interestingly, enhanced immune responses, consistent with the lower activated states, are attenuated promptly by the actin nucleation-related translocation of ATF3 to nuclei. These findings suggest that the substrate viscoelasticity induces more intense inflammation only in the case of persistent infection and promotes more sensitively perceiving the duration of infection through the F-actin correlated transcription factors. In addition, it may facilitate the cognition of immune response in inflammatory and cancerous microenvironments and have a wide range of applications in inflammatory regulations.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Lipopolisacáridos
/
Actinas
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Adv Healthc Mater
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania