Your browser doesn't support javascript.
loading
Estrus Prediction Models for Dairy Gyr Heifers.
Andrade, Valesca Vilela; Bernardes, Priscila Arrigucci; Vicentini, Rogério Ribeiro; Oliveira, André Penido; Veroneze, Renata; Ujita, Aska; Negrão, João Alberto; El Faro, Lenira.
Afiliación
  • Andrade VV; Beef Cattle Research Center, Institute of Animal Science (IZ), Rod Carlos Tonani, Km 92, Sertãozinho 14174-000, Brazil.
  • Bernardes PA; Beef Cattle Research Center, Institute of Animal Science (IZ), Rod Carlos Tonani, Km 92, Sertãozinho 14174-000, Brazil.
  • Vicentini RR; Beef Cattle Research Center, Institute of Animal Science (IZ), Rod Carlos Tonani, Km 92, Sertãozinho 14174-000, Brazil.
  • Oliveira AP; Agricultural Research Company of Minas Gerais (EPAMIG), Rua Afonso Rato 1301, Uberaba 38001-970, Brazil.
  • Veroneze R; Agricultural Research Company of Minas Gerais (EPAMIG), Rua Afonso Rato 1301, Uberaba 38001-970, Brazil.
  • Ujita A; Beef Cattle Research Center, Institute of Animal Science (IZ), Rod Carlos Tonani, Km 92, Sertãozinho 14174-000, Brazil.
  • Negrão JA; Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil.
  • El Faro L; Beef Cattle Research Center, Institute of Animal Science (IZ), Rod Carlos Tonani, Km 92, Sertãozinho 14174-000, Brazil.
Animals (Basel) ; 11(11)2021 Oct 30.
Article en En | MEDLINE | ID: mdl-34827835
Technological devices are increasingly present in livestock activities, such as identifying the reproductive status of cows. For this, predictive models must be accurate and usable in the productive context. The aims of this study were to evaluate estrus-associated changes in reticulo-rumen temperature (RRT) and activity (ACT) in Dairy Gyr heifers provided by reticulo-rumen boluses and to test the ability of different models for estrus prediction. The RRT and ACT of 45 heifers submitted to estrus synchronization were recorded using reticulo-rumen boluses. The means of RRT and ACT at different time intervals were compared between the day before and the day of estrus manifestation. An analysis of variance of RRT and ACT was performed using mixed models. A second approach employed logistic regression, random forest, and linear discriminant analysis models using RRT, ACT, time of day, and the temperature-humidity index (THI) as predictors. There was an increase in RRT and ACT at estrus (p < 0.05) compared to the same period on the day before and on the day after estrus. The random forest model provided the best performance values with a sensitivity of 51.69% and specificity of 93.1%. The present results suggest that RRT and ACT contribute to the identification of estrus in Dairy Gyr heifers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Animals (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Animals (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Suiza