In Situ Interfacial Passivation of Sn-Based Perovskite Films with a Bi-functional Ionic Salt for Enhanced Photovoltaic Performance.
ACS Appl Mater Interfaces
; 13(49): 58809-58817, 2021 Dec 15.
Article
en En
| MEDLINE
| ID: mdl-34823351
Environment-friendly Tin (Sn)-based perovskite solar cells (PSCs) have lately made significant development, showing tremendous promise in addressing the hazardous problems associated with Pb-based PSCs. However, even in N2 atmospheres, the thermodynamic stability of Sn-based perovskite films and long-term stability of Sn-based PSCs are demonstrated to be poor due to the presence of interfacial defect trap states. Here, we demonstrate the post-treatment of Sn-based perovskite films with ethylenediamine formate (EDAFa2) ion salt, serving as a bi-functional interface layer to in situ passivate the interfacial defect and improve the stability of Sn2+ by creating a thermodynamic chemical environment pathway. Moreover, the presence of EDAFa2 is shown to promote the interfacial energy level alignment, which is beneficial for the charge extraction at the interface. As a result, PSC devices with a bi-functional interface achieve a champion power conversion efficiency (PCE) as high as 9.40% and enhanced stability, retaining â¼95% of the original PCE stored in a N2 environment after â¼1960 h without encapsulation. This work highlights the significant role of an interfacial design in efficient and stable Sn-based PSCs.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Estados Unidos