Dynamical system analysis of a data-driven model constructed by reservoir computing.
Phys Rev E
; 104(4-1): 044215, 2021 Oct.
Article
en En
| MEDLINE
| ID: mdl-34781491
This study evaluates data-driven models from a dynamical system perspective, such as unstable fixed points, periodic orbits, chaotic saddle, Lyapunov exponents, manifold structures, and statistical values. We find that these dynamical characteristics can be reconstructed much more precisely by a data-driven model than by computing directly from training data. With this idea, we predict the laminar lasting time distribution of a particular macroscopic variable of chaotic fluid flow, which cannot be calculated from a direct numerical simulation of the Navier-Stokes equation because of its high computational cost.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Phys Rev E
Año:
2021
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Estados Unidos