Your browser doesn't support javascript.
loading
Spatiotemporal characteristics in systems of diffusively coupled excitable slow-fast FitzHugh-Rinzel dynamical neurons.
Mondal, Arnab; Mondal, Argha; Kumar Sharma, Sanjeev; Kumar Upadhyay, Ranjit; Antonopoulos, Chris G.
Afiliación
  • Mondal A; Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
  • Mondal A; School of Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, India.
  • Kumar Sharma S; Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
  • Kumar Upadhyay R; Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
  • Antonopoulos CG; Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.
Chaos ; 31(10): 103122, 2021 Oct.
Article en En | MEDLINE | ID: mdl-34717324
In this paper, we study an excitable, biophysical system that supports wave propagation of nerve impulses. We consider a slow-fast, FitzHugh-Rinzel neuron model where only the membrane voltage interacts diffusively, giving rise to the formation of spatiotemporal patterns. We focus on local, nonlinear excitations and diverse neural responses in an excitable one- and two-dimensional configuration of diffusively coupled FitzHugh-Rinzel neurons. The study of the emerging spatiotemporal patterns is essential in understanding the working mechanism in different brain areas. We derive analytically the coefficients of the amplitude equations in the vicinity of Hopf bifurcations and characterize various patterns, including spirals exhibiting complex geometric substructures. Furthermore, we derive analytically the condition for the development of antispirals in the neighborhood of the bifurcation point. The emergence of broken target waves can be observed to form spiral-like profiles. The spatial dynamics of the excitable system exhibits two- and multi-arm spirals for small diffusive couplings. Our results reveal a multitude of neural excitabilities and possible conditions for the emergence of spiral-wave formation. Finally, we show that the coupled excitable systems with different firing characteristics participate in a collective behavior that may contribute significantly to irregular neural dynamics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos