Your browser doesn't support javascript.
loading
A systematic study of independently-tuned room-specific PBS beam model in a beam-matched multiroom proton therapy system.
Huang, Yu-Hua; Fang, Chunfeng; Yang, Tao; Cao, Lin; Zhang, Gaolong; Qu, Baolin; Zhang, Yihang; Wang, Zishen; Xu, Shouping.
Afiliación
  • Huang YH; Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
  • Fang C; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
  • Yang T; Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.
  • Cao L; School of Physics, Beihang University, Beijing, 100191, China.
  • Zhang G; Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.
  • Qu B; Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
  • Zhang Y; Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.
  • Wang Z; Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.
  • Xu S; School of Physics, Beihang University, Beijing, 100191, China.
Radiat Oncol ; 16(1): 206, 2021 Oct 29.
Article en En | MEDLINE | ID: mdl-34715894
BACKGROUND: In the existing application of beam-matched multiroom proton therapy system, the model based on the commissioning data from the leading treatment room was used as the shared model. The purpose of this study is to investigate the ability of independently-tuned room-specific beam models of beam-matched gantries to reproduce the agreement between gantries' performance when considering the errors introduced by the modeling process. METHODS: Raw measurements of two gantries' dosimetric characteristics were quantitatively compared to ensure their agreement after initially beam-matched. Two gantries' beam model parameters, as well as the model-based computed dosimetric characteristics, were analyzed to study the introduced errors and gantries' post-modeling consistency. We forced two gantries to share the same beam model. The model-sharing patient-specific quality assurance (QA) tasks were retrospectively performed with 36 cancer patients to study the clinical impact of beam model discrepancies. RESULTS: Intra-gantry comparisons demonstrate that the modeling process introduced the errors to a certain extent indeed, which made the model-based reproduced results deviate from the raw measurements. Among them, the deviation introduced to the IDD curves was generally larger than that to the beam spots during modeling. Cross-gantry comparisons show that, from the beam model perspective, the introduced deviations deteriorated the high agreement of the dosimetric characteristics originally shown between two beam-matched gantries, but the cross-gantry discrepancy was still within the clinically acceptable tolerance. In model-sharing patient-specific QA, for the particular gantry, the beam model usage for intensity-modulated proton therapy (IMPT) QA plan generation had no significant effect on the actual delivering performance. All reached a high level of 95.0% passing rate with a 3 mm/3% criterion. CONCLUSIONS: It was preliminary recognized that among beam-matched gantries, the independently-tuned room-specific beam model from any gantry is reasonable to be chosen as the shared beam model without affecting the treatment efficacy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Fantasmas de Imagen / Terapia de Protones / Neoplasias Tipo de estudio: Health_economic_evaluation / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Radiat Oncol Asunto de la revista: NEOPLASIAS / RADIOTERAPIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Fantasmas de Imagen / Terapia de Protones / Neoplasias Tipo de estudio: Health_economic_evaluation / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Radiat Oncol Asunto de la revista: NEOPLASIAS / RADIOTERAPIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido