Your browser doesn't support javascript.
loading
Artificial neural network application for identifying risk of depression in high school students: a cross-sectional study.
Zhao, Fang-Fang.
Afiliación
  • Zhao FF; Department of Nursing Science, Faculty of Medicine, Nantong University, Nantong, 0086-226001, Jiangsu Province, China. moonstar148@hotmail.com.
BMC Psychiatry ; 21(1): 517, 2021 10 20.
Article en En | MEDLINE | ID: mdl-34670532
BACKGROUND: Identifying important factors contributing to depression is necessary for interrupting risk pathways to minimize adolescent depression. The study aimed to assess the prevalence of depression in high school students and develop a model for identifying risk of depression among adolescents. METHODS: Cross-sectional study was conducted. A total of 1190 adolescents from two high schools in eastern China participated in the study. Artificial neurol network (ANN) was used to establish the identification model. RESULTS: The prevalence of depression was 29.9% among the students. The model showed the top five protective and risk factors including perceived stress, life events, optimism, self-compassion and resilience. ANN model accuracy was 81.06%, with sensitivity 65.3%, specificity 88.4%, and area under the receiver operating characteristic (ROC) curves 0.846 in testing dataset. CONCLUSION: The ANN showed the good performance in identifying risk of depression. Promoting the protective factors and reducing the level of risk factors facilitate preventing and relieving depression.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estudiantes / Depresión Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Humans Idioma: En Revista: BMC Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estudiantes / Depresión Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Humans Idioma: En Revista: BMC Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido