Melanoma classification using light-Fields with morlet scattering transform and CNN: Surface depth as a valuable tool to increase detection rate.
Med Image Anal
; 75: 102254, 2022 01.
Article
en En
| MEDLINE
| ID: mdl-34649195
Medical image classification through learning-based approaches has been increasingly used, namely in the discrimination of melanoma. However, for skin lesion classification in general, such methods commonly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond conventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 dataset. To achieve this goal, a processing pipeline was deployed using a morlet scattering transform and a CNN model, allowing to perform a comparison between using 2D information, only 3D information, or both. Results show that discrimination between Melanoma and Nevus reaches an accuracy of 84.00, 74.00 or 94.00% when using only 2D, only 3D, or both, respectively. An increase of 14.29pp in sensitivity and 8.33pp in specificity is achieved when expanding beyond conventional 2D information by also using depth. When discriminating between Melanoma and all other types of lesions (a further imbalanced setting), an increase of 28.57pp in sensitivity and decrease of 1.19pp in specificity is achieved for the same test conditions. Overall the results of this work demonstrate significant improvements over conventional approaches.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias Cutáneas
/
Melanoma
/
Nevo
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Med Image Anal
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2022
Tipo del documento:
Article
Pais de publicación:
Países Bajos