Your browser doesn't support javascript.
loading
Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology.
Zou, Liang; Tian, Huihui; Guan, Shouliang; Ding, Jianfei; Gao, Lei; Wang, Jinfen; Fang, Ying.
Afiliación
  • Zou L; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
  • Tian H; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
  • Guan S; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Ding J; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
  • Gao L; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
  • Wang J; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
  • Fang Y; University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun ; 12(1): 5871, 2021 10 07.
Article en En | MEDLINE | ID: mdl-34620851
Optogenetics combined with electrical recording has emerged as a powerful tool for investigating causal relationships between neural circuit activity and function. However, the size of optogenetically manipulated tissue is typically 1-2 orders of magnitude larger than that can be electrically recorded, rendering difficulty for assigning functional roles of recorded neurons. Here we report a viral vector-delivery optrode (VVD-optrode) system for precise integration of optogenetics and electrophysiology in the brain. Our system consists of flexible microelectrode filaments and fiber optics that are simultaneously self-assembled in a nanoliter-scale, viral vector-delivery polymer carrier. The highly localized delivery and neuronal expression of opsin genes at microelectrode-tissue interfaces ensure high spatial congruence between optogenetically manipulated and electrically recorded neuronal populations. We demonstrate that this multifunctional system is capable of optogenetic manipulation and electrical recording of spatially defined neuronal populations for three months, allowing precise and long-term studies of neural circuit functions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Fenómenos Electrofisiológicos / Optogenética Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Fenómenos Electrofisiológicos / Optogenética Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido