Your browser doesn't support javascript.
loading
Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics.
Bozó, Éva; Ervasti, Henri; Halonen, Niina; Shokouh, Seyed Hossein Hosseini; Tolvanen, Jarkko; Pitkänen, Olli; Järvinen, Topias; Pálvölgyi, Petra S; Szamosvölgyi, Ákos; Sápi, András; Konya, Zoltan; Zaccone, Marta; Montalbano, Luana; De Brauwer, Laurens; Nair, Rakesh; Martínez-Nogués, Vanesa; San Vicente Laurent, Leire; Dietrich, Thomas; Fernández de Castro, Laura; Kordas, Krisztian.
Afiliación
  • Bozó É; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Ervasti H; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Halonen N; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Shokouh SHH; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Tolvanen J; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Pitkänen O; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Järvinen T; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Pálvölgyi PS; Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland.
  • Szamosvölgyi Á; Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary.
  • Sápi A; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary.
  • Konya Z; Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary.
  • Zaccone M; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary.
  • Montalbano L; Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary.
  • De Brauwer L; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary.
  • Nair R; Proplast-Consorzio per la Promozione della Cultura Plastica, Via Roberto di Ferro, 86, 15122 Alessandria (AL), Italy.
  • Martínez-Nogués V; Proplast-Consorzio per la Promozione della Cultura Plastica, Via Roberto di Ferro, 86, 15122 Alessandria (AL), Italy.
  • San Vicente Laurent L; Bio Base Europe Pilot Plant VZW, Rodenhuizekaai 1, 9042 Desteldonk (Gent), Belgium.
  • Dietrich T; Bio Base Europe Pilot Plant VZW, Rodenhuizekaai 1, 9042 Desteldonk (Gent), Belgium.
  • Fernández de Castro L; Tecnopackaging, Polígono Industrial Empresarium, Calle Romero 12, 50720 Zaragoza, Spain.
  • Kordas K; TECNALIA, Basque Research and Technology Alliance (BRTA), Health Division, Parque Tecnológico de Álava, Leonardo Da Vinci, 11, E-01510 Miñano, Araba, Spain.
ACS Appl Mater Interfaces ; 13(41): 49301-49312, 2021 Oct 20.
Article en En | MEDLINE | ID: mdl-34609829
The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0-26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos