Solution-Processed Perovskite Field-Effect Transistor Artificial Synapses.
Adv Mater
; 33(52): e2104034, 2021 Dec.
Article
en En
| MEDLINE
| ID: mdl-34609764
Metal halide perovskites are distinctive semiconductors that exhibit both ionic and electronic transport and are promising for artificial synapses. However, developing a 3-terminal transistor artificial synapse with the perovskite channel remains elusive due to the lack of a proper technique to regulate mobile ions in a non-volatile manner. Here, a solution-processed perovskite transistor is reported for artificial synapses through the implementation of a ferroelectric gate. The ferroelectric polarization provides a non-volatile electric field on the perovskite, leading to fixation of the mobile ions and hence modulation of the electronic conductance of the channel. Multi-state channel conductance is realized by partial ferroelectric polarization. The ferroelectric-gated perovskite transistor is successfully used as an artificial synapse that emulates basic synaptic functions such as long-term plasticity with excellent linearity, short-term as well as spike-timing-dependent plasticity. The strategy to regulate ion dynamics in the perovskites using the ferroelectric gate suggests a generic route to employ perovskites for synaptic electronics.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Alemania