Suppressing the Kibble-Zurek Mechanism by a Symmetry-Violating Bias.
Phys Rev Lett
; 127(11): 115702, 2021 Sep 10.
Article
en En
| MEDLINE
| ID: mdl-34558928
The formation of topological defects in continuous phase transitions is driven by the Kibble-Zurek mechanism. Here we study the formation of single- and half-quantum vortices during transition to the polar phase of ^{3}He in the presence of a symmetry-breaking bias provided by the applied magnetic field. We find that vortex formation is suppressed exponentially when the length scale associated with the bias field becomes smaller than the Kibble-Zurek length. We thus demonstrate an experimentally feasible shortcut to adiabaticity-an important aspect for further understanding of phase transitions as well as for engineering applications such as quantum computers or simulators.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2021
Tipo del documento:
Article
País de afiliación:
Finlandia
Pais de publicación:
Estados Unidos