Your browser doesn't support javascript.
loading
Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup.
Ghita, Maria; Copot, Dana; Ionescu, Clara M.
Afiliación
  • Ghita M; Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium.
  • Copot D; EEDT Core Group on Decision and Control in Flanders Make Consortium, Tech Lane Science Park 131, Ghent 9052, Belgium.
  • Ionescu CM; Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium.
J Adv Res ; 32: 61-71, 2021 09.
Article en En | MEDLINE | ID: mdl-34484826
Introduction: As pulmonary dysfunctions are prospective factors for developing cancer, efforts are needed to solve the limitations regarding applications in lung cancer. Fractional order respiratory impedance models can be indicative of lung cancer dynamics and tissue heterogeneity. Objective: The purpose of this study is to investigate how the existence of a tumorous tissue in the lung modifies the parameters of the proposed models. The first use of a prototype forced oscillations technique (FOT) device in a mimicked lung tumor setup is investigated by comparing and interpreting the experimental findings. Methods: The fractional order model parameters are determined for the mechanical properties of the healthy and tumorous lung. Two protocols have been performed for a mimicked lung tumor setup in a laboratory environment. A low frequency evaluation of respiratory impedance model and nonlinearity index were assessed using the forced oscillations technique. Results: The viscoelastic properties of the lung tissue change, results being mirrored in the respiratory impedance assessment via FOT. The results demonstrate significant differences among the mimicked healthy and tumor measurements, (p-values <0.05) for impedance values and also for heterogeneity index. However, there was no significant difference in lung function before and after immersing the mimicked lung in water or saline solution, denoting no structural changes. Conclusion: Simulation tests comparing the changes in impedance support the research hypothesis. The impedance frequency response is effective in non-invasive identification of respiratory tissue abnormalities in tumorous lung, analyzed with appropriate fractional models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pruebas de Función Respiratoria / Neoplasias Pulmonares / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Adv Res Año: 2021 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Egipto

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pruebas de Función Respiratoria / Neoplasias Pulmonares / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Adv Res Año: 2021 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Egipto