The controlling role of atmosphere in dawsonite versus gibbsite precipitation from tetrahedral aluminate species.
Dalton Trans
; 50(38): 13438-13446, 2021 Oct 05.
Article
en En
| MEDLINE
| ID: mdl-34477710
In highly alkaline solution, aluminum speciates as the tetrahedrally coordinated aluminate monomer, Al(OH)4- and/or dimer Al2O(OH)62-, yet precipitates as octahedrally coordinated gibbsite (Al(OH)3). This tetrahedral to octahedral transformation governs Al precipitation, which is crucial to worldwide aluminum (Al) production, and to the retrieval and processing of Al-containing caustic high-level radioactive wastes. Despite its significance, the transformation pathway remains unknown. Here we explore the roles of atmospheric water and carbon dioxide in mediating the transformation of the tetrahedrally coordinated potassium aluminate dimer salt (K2Al2O(OH)6) to gibbsite versus potassium dawsonite (KAl(CO3)(OH)2). A combination of in situ attenuated total reflection infrared spectroscopy, ex situ micro X-ray diffraction, and multivariate curve resolution-alternating least squares chemometrics analysis reveals that humidity plays a key role in the transformation by limiting the amount of alkalinity neutralization by dissolved CO2. Lower humidity favors higher alkalinity and incorporation of carbonate species in the final Al product to form KAl(CO3)(OH)2. Higher humidity enables more acid generation that destabilizes dawsonite and favors gibbsite as the solubility limiting phase. This indicates that the transition from tetra- to octahedrally coordinated Al does not have to occur in bulk solution, as has often been hypothesized, but may instead occur in thin water films present on mineral surfaces in humid environments. Our findings suggest that phase selection can be controlled by humidity, which could enable new pathways to Al transformations useful to the Al processing industry, as well as improved understanding of phases that appear in caustic Al-bearing solutions exposed to atmospheric conditions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Dalton Trans
Asunto de la revista:
QUIMICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido