Your browser doesn't support javascript.
loading
Best Practices for Alchemical Free Energy Calculations [Article v1.0].
Mey, Antonia S J S; Allen, Bryce K; Macdonald, Hannah E Bruce; Chodera, John D; Hahn, David F; Kuhn, Maximilian; Michel, Julien; Mobley, David L; Naden, Levi N; Prasad, Samarjeet; Rizzi, Andrea; Scheen, Jenke; Shirts, Michael R; Tresadern, Gary; Xu, Huafeng.
Afiliación
  • Mey ASJS; EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Allen BK; Silicon Therapeutics, Boston, MA, USA.
  • Macdonald HEB; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY, USA.
  • Chodera JD; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY, USA.
  • Hahn DF; Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse B-2340, Belgium.
  • Kuhn M; EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Michel J; Cresset, Cambridgeshire, UK.
  • Mobley DL; EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Naden LN; Departments of Pharmaceutical Sciences and Chemistry, University of California, Irvine, Irvine, USA.
  • Prasad S; Molecular Sciences Software Institute, Blacksburg VA, USA.
  • Rizzi A; National Institutes of Health, Bethesda, MD, USA.
  • Scheen J; Silicon Therapeutics, Boston, MA, USA.
  • Shirts MR; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA.
  • Tresadern G; EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Xu H; University of Colorado Boulder, Boulder, CO, USA.
Article en En | MEDLINE | ID: mdl-34458687
Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing alchemical intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Living J Comput Mol Sci Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Living J Comput Mol Sci Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos