Your browser doesn't support javascript.
loading
Dielectric Relaxation, Local Structure and Lattice Dynamics in Mn-Doped Potassium Tantalate Ceramics.
Tkach, Alexander; Almeida, Abilio; Levin, Igor; Woicik, Joseph C; Vilarinho, Paula M.
Afiliación
  • Tkach A; Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
  • Almeida A; Department of Physics of Science Faculty, IFIMUP, University of Porto, 4169-007 Porto, Portugal.
  • Levin I; Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
  • Woicik JC; Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
  • Vilarinho PM; Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
Materials (Basel) ; 14(16)2021 Aug 17.
Article en En | MEDLINE | ID: mdl-34443152
Alkaline niobate and tantalate perovskites have attracted attention as polar dielectrics for electronics and telecommunications. Here, we studied the polar behaviour, lattice dynamics, and local structure in conventionally processed K0.985Mn0.015TaO3±Î´ ceramics using a combination of variable-temperature dielectric and Raman spectroscopies, and X-ray absorption fine structure (XAFS) measurements, respectively. Mn doping induces a low-frequency dielectric relaxation in KTaO3 (KT), which follows the Arrhenius law with an activation energy U ≈ 105 meV and the characteristic relaxation time τ0 ≈ 4.6 × 10-14 s. Our XAFS results support preferential Mn occupancy of the cuboctahedral sites as Mn2+, with these cations strongly off-centred in the oversized oxygen cages. Such disordered Mn displacements generate electric dipoles, which are proposed as the source of the observed dielectric relaxation. We show that in Mn-doped ceramics, the low-frequency polar TO1 mode softens on cooling and, at low temperatures, exhibits a higher frequency than in undoped KT. This mode displays no detectable splitting, which contrasts with Li-doped KT that also contains off-centred Li+ species on the cuboctahedral sites. Therefore, we conclude that the coupling between the Mn displacements and the lattice is weaker than in the Li case, and Mn-doped KT therefore exhibits a dielectric relaxation but no ferroelectric transition.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Suiza