Monotone Quantifiers Emerge via Iterated Learning.
Cogn Sci
; 45(8): e13027, 2021 08.
Article
en En
| MEDLINE
| ID: mdl-34379338
Natural languages exhibit many semantic universals, that is, properties of meaning shared across all languages. In this paper, we develop an explanation of one very prominent semantic universal, the monotonicity universal. While the existing work has shown that quantifiers satisfying the monotonicity universal are easier to learn, we provide a more complete explanation by considering the emergence of quantifiers from the perspective of cultural evolution. In particular, we show that quantifiers satisfy the monotonicity universal evolve reliably in an iterated learning paradigm with neural networks as agents.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Evolución Cultural
/
Aprendizaje
Límite:
Humans
Idioma:
En
Revista:
Cogn Sci
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Estados Unidos