Your browser doesn't support javascript.
loading
Reconfigurable artificial microswimmers with internal feedback.
Alvarez, L; Fernandez-Rodriguez, M A; Alegria, A; Arrese-Igor, S; Zhao, K; Kröger, M; Isa, Lucio.
Afiliación
  • Alvarez L; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, Switzerland. laura.alvarez-frances@mat.ethz.ch.
  • Fernandez-Rodriguez MA; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, Switzerland.
  • Alegria A; Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, Granada, Spain.
  • Arrese-Igor S; Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center, San Sebastián, Spain.
  • Zhao K; Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center, San Sebastián, Spain.
  • Kröger M; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, Switzerland.
  • Isa L; Polymer Physics, Department of Materials, ETH Zurich, Zurich, Switzerland.
Nat Commun ; 12(1): 4762, 2021 08 06.
Article en En | MEDLINE | ID: mdl-34362934
Self-propelling microparticles are often proposed as synthetic models for biological microswimmers, yet they lack the internally regulated adaptation of their biological counterparts. Conversely, adaptation can be encoded in larger-scale soft-robotic devices but remains elusive to transfer to the colloidal scale. Here, we create responsive microswimmers, powered by electro-hydrodynamic flows, which can adapt their motility via internal reconfiguration. Using sequential capillary assembly, we fabricate deterministic colloidal clusters comprising soft thermo-responsive microgels and light-absorbing particles. Light absorption induces preferential local heating and triggers the volume phase transition of the microgels, leading to an adaptation of the clusters' motility, which is orthogonal to their propulsion scheme. We rationalize this response via the coupling between self-propulsion and variations of particle shape and dielectric properties upon heating. Harnessing such coupling allows for strategies to achieve local dynamical control with simple illumination patterns, revealing exciting opportunities for developing tactic active materials.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido