Your browser doesn't support javascript.
loading
Bayesian hierarchical factor regression models to infer cause of death from verbal autopsy data.
Moran, Kelly R; Turner, Elizabeth L; Dunson, David; Herring, Amy H.
Afiliación
  • Moran KR; Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Turner EL; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
  • Dunson D; Duke Global Health Institute, Duke University, Durham, NC, USA.
  • Herring AH; Department of Statistical Science, Duke University, Durham, NC, USA.
J R Stat Soc Ser C Appl Stat ; 70(3): 532-557, 2021 Jun.
Article en En | MEDLINE | ID: mdl-34334826
In low-resource settings where vital registration of death is not routine it is often of critical interest to determine and study the cause of death (COD) for individuals and the cause-specific mortality fraction (CSMF) for populations. Post-mortem autopsies, considered the gold standard for COD assignment, are often difficult or impossible to implement due to deaths occurring outside the hospital, expense, and/or cultural norms. For this reason, Verbal Autopsies (VAs) are commonly conducted, consisting of a questionnaire administered to next of kin recording demographic information, known medical conditions, symptoms, and other factors for the decedent. This article proposes a novel class of hierarchical factor regression models that avoid restrictive assumptions of standard methods, allow both the mean and covariance to vary with COD category, and can include covariate information on the decedent, region, or events surrounding death. Taking a Bayesian approach to inference, this work develops an MCMC algorithm and validates the FActor Regression for Verbal Autopsy (FARVA) model in simulation experiments. An application of FARVA to real VA data shows improved goodness-of-fit and better predictive performance in inferring COD and CSMF over competing methods. Code and a user manual are made available at https://github.com/kelrenmor/farva.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J R Stat Soc Ser C Appl Stat Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J R Stat Soc Ser C Appl Stat Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido