Your browser doesn't support javascript.
loading
Self-Healing Solid Polymer Electrolyte with High Ion Conductivity and Super Stretchability for All-Solid Zinc-Ion Batteries.
Liu, Dong; Tang, Zhehao; Luo, Longfei; Yang, Weilu; Liu, Yun; Shen, Zhihao; Fan, Xing-He.
Afiliación
  • Liu D; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Tang Z; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Luo L; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Yang W; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Liu Y; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Shen Z; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Fan XH; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
ACS Appl Mater Interfaces ; 13(30): 36320-36329, 2021 Aug 04.
Article en En | MEDLINE | ID: mdl-34309364
The zinc-ion battery (ZIB) is a novel energy storage device, an attractive alternative to the lithium-ion battery. The frequently used aqueous electrolyte suffers from many problems such as zinc dendrites and leakage, which prompts hydrogel electrolytes and solid electrolytes as good replacements. However, hydrogel electrolytes are usually unstable, owing to water volatilization. Herein, a novel solid polymer electrolyte (SPE) utilizing coordination of zinc ions is designed and then introduced into an all-solid ZIB. Benefiting from the unique coordination structure between the polymer and zinc ions, the SPE shows outstanding flexibility, high ion conductivity, and self-healing properties. In addition, the imine bonds in the polymer allow the electrolyte to degrade in acid environments, endowing its recyclability. More importantly, solid-state ZIBs based on the polymer electrolytes exhibit an impressive cycling stability (125% capacity retention after 300 cycles) and a high coulombic efficiency (94% after 300 cycles). The results demonstrate the promising potentials of the developed SPEs that can be used in all-solid ZIBs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos