Your browser doesn't support javascript.
loading
Artificial neural network trained on smartphone behavior can trace epileptiform activity in epilepsy.
Duckrow, Robert B; Ceolini, Enea; Zaveri, Hitten P; Brooks, Cornell; Ghosh, Arko.
Afiliación
  • Duckrow RB; Department of Neurology, Yale University, New Haven, CT, USA.
  • Ceolini E; QuantActions GmbH, Lausanne, Switzerland.
  • Zaveri HP; Institute of Psychology, Leiden University, Wassenaarseweg 52, Leiden 2333 AK, The Netherlands.
  • Brooks C; Department of Neurology, Yale University, New Haven, CT, USA.
  • Ghosh A; Department of Neurology, Yale University, New Haven, CT, USA.
iScience ; 24(6): 102538, 2021 Jun 25.
Article en En | MEDLINE | ID: mdl-34308281
A range of abnormal electrical activity patterns termed epileptiform discharges can occur in the brains of persons with epilepsy. These epileptiform discharges can be monitored and recorded with implanted devices that deliver therapeutic neurostimulation. These continuous recordings provide an opportunity to study the behavioral correlates of epileptiform discharges as the patients go about their daily lives. Here, we captured the smartphone touchscreen interactions in eight patients in conjunction with electrographic recordings (accumulating 35,714 h) and by using an artificial neural network model addressed if the behavior reflected the epileptiform discharges. The personalized model outputs based on smartphone behavioral inputs corresponded well with the observed electrographic data (R: 0.2-0.6, median 0.4). The realistic reconstructions of epileptiform activity based on smartphone use demonstrate how day-to-day digital behavior may be converted to personalized markers of disease activity in epilepsy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos