Coupling Spin Defects in Hexagonal Boron Nitride to Monolithic Bullseye Cavities.
Nano Lett
; 21(15): 6549-6555, 2021 Aug 11.
Article
en En
| MEDLINE
| ID: mdl-34288695
Color centers in hexagonal boron nitride (hBN) are becoming an increasingly important building block for quantum photonic applications. Herein, we demonstrate the efficient coupling of recently discovered spin defects in hBN to purposely designed bullseye cavities. We show that boron vacancy spin defects couple to the monolithic hBN cavity system and exhibit a 6.5-fold enhancement. In addition, by comparative finite-difference time-domain modeling, we shed light on the emission dipole orientation, which has not been experimentally demonstrated at this point. Beyond that, the coupled spin system exhibits an enhanced contrast in optically detected magnetic resonance readout and improved signal-to-noise ratio. Thus, our experimental results, supported by simulations, constitute a first step toward integration of hBN spin defects with photonic resonators for a scalable spin-photon interface.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2021
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Estados Unidos