Your browser doesn't support javascript.
loading
A flexible nitrogen-vacancy center probe for scanning magnetometry.
Guo, Maosen; Wang, Mengqi; Wang, Pengfei; Wu, Diguang; Ye, Xiangyu; Yu, Pei; Huang, You; Shi, Fazhan; Wang, Ya; Du, Jiangfeng.
Afiliación
  • Guo M; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Wang M; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Wang P; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Wu D; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Ye X; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Yu P; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Huang Y; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Shi F; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Wang Y; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
  • Du J; CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; and Synerge
Rev Sci Instrum ; 92(5): 055001, 2021 May 01.
Article en En | MEDLINE | ID: mdl-34243241
The key component of the scanning magnetometry based on nitrogen-vacancy centers is the diamond probe. Here, we designed and fabricated a new type of probe with an array of pillars on a (100 µm)2 × 50 µm diamond chip. The probe features high yield, convertibility to be a single pillar, and expedient reusability. Our fabrication is dramatically simplified by using ultraviolet laser cutting to shape the chip from a diamond substrate instead of additional lithography and time-consuming reactive ion etching. As an example, we demonstrate the imaging of a single magnetic skyrmion with nanoscale resolution. In the future, this flexible probe will be particularly well-suited for commercial applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos