Your browser doesn't support javascript.
loading
Caco-2 in vitro model of human gastrointestinal tract for studying the absorption of titanium dioxide and silver nanoparticles from seafood.
Taboada-López, María Vanesa; Leal-Martínez, Baltazar Hiram; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Taboada-Antelo, Pablo; Moreda-Piñeiro, Antonio.
Afiliación
  • Taboada-López MV; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain.
  • Leal-Martínez BH; Colloids and Polymer Physics Group, Strategic Grouping in Materials (AEMAT), Department of Particle Physics, Faculty of Physics, Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, S/n. E15782, Santiago de Compostela, Spain.
  • Domínguez-González R; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain.
  • Bermejo-Barrera P; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain.
  • Taboada-Antelo P; Colloids and Polymer Physics Group, Strategic Grouping in Materials (AEMAT), Department of Particle Physics, Faculty of Physics, Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, S/n. E15782, Santiago de Compostela, Spain.
  • Moreda-Piñeiro A; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain. Electroni
Talanta ; 233: 122494, 2021 Oct 01.
Article en En | MEDLINE | ID: mdl-34215112
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in industry as a white pigment (paints, paper industry and toothpastes), photocatalysts (environmental decontamination and photovoltaic cells), inorganic UV filter (sunscreens and personal care products) and as a food additive (E171) and antimicrobial food packaging material. Silver nanoparticles (Ag NPs) are used in photonics, microelectronics, catalysis and medicine due to their catalytic activity, magnetic and optical polarizability, electrical and thermal conductivities and enhanced Raman scattering. They also have antibacterial, antifungal and antiviral activities, as well as anti-inflammatory potential. The huge increase in the use of nano-based products, mainly metallic NPs, implies the presence of nanomaterials in the environment, and hence, the unintentional human ingestion through water or foods (gastrointestinal tract is the main pathway of NPs intake in humans). The presence of TiO2 NPs and Ag NPs in seafood samples was firstly established using an ultrasound assisted enzymatic hydrolysis procedure and sp-ICP-MS analysis. Several clams, cockles, mussels, razor clams, oysters and variegated scallops, which contain TiO2 NPs and Ag NPs, were subjected to an in vitro digestion process simulating human gastrointestinal digestion in the stomach and in the small and large intestine to determine the bioaccessibility of these NPs. Caco-2 cells were selected as model of human intestinal epithelium for transport studies because of the development of membrane transporters that are responsible for the uptake of chemicals. Parameters as transepithelial electrical resistance (TEER) and permeability of Lucifer Yellow were studied for establishing cell monolayer integrity. TiO2 NPs and Ag NPs transport as well as total Ti and Ag concentrations passing through the gastrointestinal epithelial barrier model (0-2 h) were assessed by sp-ICP-MS and ICP-MS in several molluscs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal Límite: Humans Idioma: En Revista: Talanta Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal Límite: Humans Idioma: En Revista: Talanta Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Países Bajos