Your browser doesn't support javascript.
loading
API Content and Blend Uniformity Using Quantum Cascade Laser Spectroscopy Coupled with Multivariate Analysis.
Villanueva-López, Vladimir; Pacheco-Londoño, Leonardo C; Villarreal-González, Reynaldo; Castro-Suarez, John R; Román-Ospino, Andrés; Ortiz-Rivera, William; Galán-Freyle, Nataly J; Hernandez-Rivera, Samuel P.
Afiliación
  • Villanueva-López V; ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, Mayagüez, PR 00681, USA.
  • Pacheco-Londoño LC; ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, Mayagüez, PR 00681, USA.
  • Villarreal-González R; Pharmaceutical Chemistry Department, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla 080002, Colombia.
  • Castro-Suarez JR; AudacIA Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia.
  • Román-Ospino A; AudacIA Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia.
  • Ortiz-Rivera W; ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, Mayagüez, PR 00681, USA.
  • Galán-Freyle NJ; Exact Basics Area, Universidad del Sinú, Unisinú, Cartagena 130015, Colombia.
  • Hernandez-Rivera SP; Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Pharmaceutics ; 13(7)2021 Jun 29.
Article en En | MEDLINE | ID: mdl-34209940
The process analytical technology (PAT) initiative proposed by the US Food and Drug Administration (FDA) suggests innovative methods to better understand pharmaceutical processes. The development of analytical methods that quantify active pharmaceutical ingredients (APIs) in powders and tablets is fundamental to monitoring and controlling a drug product's quality. Analytical methods based on vibrational spectroscopy do not require sample preparation and can be implemented during in-line manufacturing to maintain quality at each stage of operations. In this study, a mid-infrared (MIR) quantum cascade laser (QCL) spectroscopy-based protocol was performed to quantify ibuprofen in formulations of powder blends and tablets. Fourteen blends were prepared with varying concentrations from 0.0% to 21.0% (w/w) API. MIR laser spectra were collected in the spectral range of 990 to 1600 cm-1. Partial least squares (PLS) models were developed to correlate the intensities of vibrational signals with API concentrations in powder blends and tablets. PLS models were evaluated based on the following figures of merit: correlation coefficient (R2), root mean square error of calibration, root mean square error of prediction, root mean square error of cross-validation, and relative standard error of prediction. QCL assisted by multivariate analysis was demonstrated to be accurate and robust for analysis of the content and blend uniformity of pharmaceutical compounds.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Pharmaceutics Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Pharmaceutics Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza