Your browser doesn't support javascript.
loading
Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning.
Guo, Pengwei; Meng, Weina; Xu, Mingfeng; Li, Victor C; Bao, Yi.
Afiliación
  • Guo P; Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
  • Meng W; Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
  • Xu M; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
  • Li VC; Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Bao Y; Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
Materials (Basel) ; 14(12)2021 Jun 08.
Article en En | MEDLINE | ID: mdl-34201068
Current development of high-performance fiber-reinforced cementitious composites (HPFRCC) mainly relies on intensive experiments. The main purpose of this study is to develop a machine learning method for effective and efficient discovery and development of HPFRCC. Specifically, this research develops machine learning models to predict the mechanical properties of HPFRCC through innovative incorporation of micromechanics, aiming to increase the prediction accuracy and generalization performance by enriching and improving the datasets through data cleaning, principal component analysis (PCA), and K-fold cross-validation. This study considers a total of 14 different mix design variables and predicts the ductility of HPFRCC for the first time, in addition to the compressive and tensile strengths. Different types of machine learning methods are investigated and compared, including artificial neural network (ANN), support vector regression (SVR), classification and regression tree (CART), and extreme gradient boosting tree (XGBoost). The results show that the developed machine learning models can reasonably predict the concerned mechanical properties and can be applied to perform parametric studies for the effects of different mix design variables on the mechanical properties. This study is expected to greatly promote efficient discovery and development of HPFRCC.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Materials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Materials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza