Your browser doesn't support javascript.
loading
Development of an electrical impedance tomography set-up for the quantification of mineralization in biopolymer scaffolds.
Cortesi, Marilisa; Samoré, Andrea; Lovecchio, Joseph; Ramilli, Roberta; Tartagni, Marco; Giordano, Emanuele; Crescentini, Marco.
Afiliación
  • Cortesi M; BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy.
  • Samoré A; Department of Mathematics Alma Mater Studiorum-University of Bologna, Bologna, Italy.
  • Lovecchio J; Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.
  • Ramilli R; Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy.
  • Tartagni M; Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.
  • Giordano E; BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy.
  • Crescentini M; Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.
Physiol Meas ; 42(6)2021 06 29.
Article en En | MEDLINE | ID: mdl-34190050
Objective. 3D cell cultures are becoming a fundamental resource forin-vitrostudies, as they mimic more closelyin-vivobehavior. The analysis of these constructs, however, generally rely on destructive techniques, that prevent the monitoring over time of the same construct, thus increasing the results variability and the resources needed for each experiment.Approach. In this work, we focus on mineralization, a crucial process during maturation of artificial bone models, and propose electrical impedance tomography (EIT) as an alternative non-destructive approach. In particular, we discuss the development of an integrated hardware/software system capable of acquiring experimental data from 3D scaffolds and reconstructing the corresponding conductivity maps. We also show how the same software can test how the measurement is affected by biological features such as scaffold shrinking during the culture.Main results. An initial validation, comprising the acquisition of both a non-conductive phantom and alginate/gelatin scaffolds with known calcium content will be presented, together with thein-silicostudy of a cell-induced mineralization process. This analysis will allow for an initial verification of the systems functionality while limiting the effects of biological variability due to cell number and activity.Significance. Our results show the potential of EIT for the non-destructive quantification of matrix mineralization in 3D scaffolds, and open to the possible long term monitoring of this fundamental hallmark of osteogenic differentiation in hybrid tissue engineered constructs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Andamios del Tejido Idioma: En Revista: Physiol Meas Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Andamios del Tejido Idioma: En Revista: Physiol Meas Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido