Your browser doesn't support javascript.
loading
A Stable High-Capacity Lithium-Ion Battery Using a Biomass-Derived Sulfur-Carbon Cathode and Lithiated Silicon Anode.
Marangon, Vittorio; Hernández-Rentero, Celia; Olivares-Marín, Mara; Gómez-Serrano, Vicente; Caballero, Álvaro; Morales, Julián; Hassoun, Jusef.
Afiliación
  • Marangon V; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17, Ferrara, 44121, Italy.
  • Hernández-Rentero C; Department of Química Inorgánica e Ingeniería Química, Instituto de Química Fina y Nanoquímica, University of Córdoba, 14071, Córdoba, Spain.
  • Olivares-Marín M; Department of Ingeniería Mecánica, Energética y de los Materiales, University of Extremadura Centro Universitario de Mérida, 06800, Mérida, Spain.
  • Gómez-Serrano V; Department of Química Inorgánica, Facultad de Ciencias, University of Extremadura, 06006, Badajoz, Spain.
  • Caballero Á; Department of Química Inorgánica e Ingeniería Química, Instituto de Química Fina y Nanoquímica, University of Córdoba, 14071, Córdoba, Spain.
  • Morales J; Department of Química Inorgánica e Ingeniería Química, Instituto de Química Fina y Nanoquímica, University of Córdoba, 14071, Córdoba, Spain.
  • Hassoun J; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17, Ferrara, 44121, Italy.
ChemSusChem ; 14(16): 3333-3343, 2021 Aug 23.
Article en En | MEDLINE | ID: mdl-34165920
A full lithium-ion-sulfur cell with a remarkable cycle life was achieved by combining an environmentally sustainable biomass-derived sulfur-carbon cathode and a pre-lithiated silicon oxide anode. X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and thermogravimetry of the cathode evidenced the disordered nature of the carbon matrix in which sulfur was uniformly distributed with a weight content as high as 75 %, while scanning and transmission electron microscopy revealed the micrometric morphology of the composite. The sulfur-carbon electrode in the lithium half-cell exhibited a maximum capacity higher than 1200 mAh gS -1 , reversible electrochemical process, limited electrode/electrolyte interphase resistance, and a rate capability up to C/2. The material showed a capacity decay of about 40 % with respect to the steady-state value over 100 cycles, likely due to the reaction with the lithium metal of dissolved polysulfides or impurities including P detected in the carbon precursor. Therefore, the replacement of the lithium metal with a less challenging anode was suggested, and the sulfur-carbon composite was subsequently investigated in the full lithium-ion-sulfur battery employing a Li-alloying silicon oxide anode. The full-cell revealed an initial capacity as high as 1200 mAh gS -1 , a retention increased to more than 79 % for 100 galvanostatic cycles, and 56 % over 500 cycles. The data reported herein well indicated the reliability of energy storage devices with extended cycle life employing high-energy, green, and safe electrode materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Alemania