Your browser doesn't support javascript.
loading
Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy.
Liu, Haihua; Gage, Thomas E; Singh, Prem; Jaiswal, Amit; Schaller, Richard D; Tang, Jau; Park, Sang Tae; Gray, Stephen K; Arslan, Ilke.
Afiliación
  • Liu H; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
  • Gage TE; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
  • Singh P; School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India.
  • Jaiswal A; School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India.
  • Schaller RD; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
  • Tang J; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
  • Park ST; IDES, Inc. (a JEOL company), Pleasanton, California 94588, United States.
  • Gray SK; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
  • Arslan I; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Nano Lett ; 21(13): 5842-5849, 2021 07 14.
Article en En | MEDLINE | ID: mdl-34153185
Hybrids of graphene and metal plasmonic nanostructures are promising building blocks for applications in optoelectronics, surface-enhanced scattering, biosensing, and quantum information. An understanding of the coupling mechanism in these hybrid systems is of vital importance to its applications. Previous efforts in this field mainly focused on spectroscopic studies of strong coupling within the hybrids with no spatial resolution. Here we report direct imaging of the local plasmonic coupling between single Au nanocapsules and graphene step edges at the nanometer scale by photon-induced near-field electron microscopy in an ultrafast electron microscope for the first time. The proximity of a step in the graphene to the nanocapsule causes asymmetric surface charge density at the ends of the nanocapsules. Computational electromagnetic simulations confirm the experimental observations. The results reported here indicate that this hybrid system could be used to manipulate the localized electromagnetic field on the nanoscale, enabling promising future plasmonic devices.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanoestructuras / Grafito Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanoestructuras / Grafito Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos