Your browser doesn't support javascript.
loading
Peering into buried interfaces with X-rays and electrons to unveil MgCO3 formation during CO2 capture in molten salt-promoted MgO.
Bork, Alexander H; Rekhtina, Margarita; Willinger, Elena; Castro-Fernández, Pedro; Drnec, Jakub; Abdala, Paula M; Müller, Christoph R.
Afiliación
  • Bork AH; Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.
  • Rekhtina M; Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.
  • Willinger E; Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland; elenawi@ethz.ch abdalap@ethz.ch muelchri@ethz.ch.
  • Castro-Fernández P; Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.
  • Drnec J; European Synchrotron Radiation Facility, 38000 Grenoble, France.
  • Abdala PM; Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland; elenawi@ethz.ch abdalap@ethz.ch muelchri@ethz.ch.
  • Müller CR; Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland; elenawi@ethz.ch abdalap@ethz.ch muelchri@ethz.ch.
Proc Natl Acad Sci U S A ; 118(26)2021 Jun 29.
Article en En | MEDLINE | ID: mdl-34140337
The addition of molten alkali metal salts drastically accelerates the kinetics of CO2 capture by MgO through the formation of MgCO3 However, the growth mechanism, the nature of MgCO3 formation, and the exact role of the molten alkali metal salts on the CO2 capture process remain elusive, holding back the development of more-effective MgO-based CO2 sorbents. Here, we unveil the growth mechanism of MgCO3 under practically relevant conditions using a well-defined, yet representative, model system that is a MgO(100) single crystal coated with NaNO3 The model system is interrogated by in situ X-ray reflectometry coupled with grazing incidence X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. When bare MgO(100) is exposed to a flow of CO2, a noncrystalline surface carbonate layer of ca. 7-Å thickness forms. In contrast, when MgO(100) is coated with NaNO3, MgCO3 crystals nucleate and grow. These crystals have a preferential orientation with respect to the MgO(100) substrate, and form at the interface between MgO(100) and the molten NaNO3 MgCO3 grows epitaxially with respect to MgO(100), and the lattice mismatch between MgCO3 and MgO is relaxed through lattice misfit dislocations. Pyramid-shaped pits on the surface of MgO, in proximity to and below the MgCO3 crystals, point to the etching of surface MgO, providing dissolved [Mg2+…O2-] ionic pairs for MgCO3 growth. Our studies highlight the importance of combining X-rays and electron microscopy techniques to provide atomic to micrometer scale insight into the changes occurring at complex interfaces under reactive conditions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos