Your browser doesn't support javascript.
loading
Conformational dynamics of Tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity.
Valadares, Veronica S; Martins, Luan C; Roman, Ernesto A; Valente, Ana Paula; Cino, Elio A; Moraes, Adolfo H.
Afiliación
  • Valadares VS; Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Martins LC; Graduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Roman EA; Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Valente AP; National Center of Nuclear Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Cino EA; Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address: eliocino@ufmg.br.
  • Moraes AH; Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany. Electronic address: adolfohmoraes@ufmg.br.
Biochim Biophys Acta Gen Subj ; 1865(9): 129949, 2021 09.
Article en En | MEDLINE | ID: mdl-34139289
BACKGROUND: The N-terminal domain of Tetracenomycin aromatase/cyclase (TcmN), an enzyme derived from Streptomyces glaucescens, is involved in polyketide cyclization, aromatization, and folding. Polyketides are a diverse class of secondary metabolites produced by certain groups of bacteria, fungi, and plants with various pharmaceutical applications. Examples include antibiotics, such as tetracycline, and anticancer drugs, such as doxorubicin. Because TcmN is a promising enzyme for in vitro production of polyketides, it is important to identify conditions that enhance its thermal resistance and optimize its function. METHODS: TcmN unfolding, stability, and dynamics were evaluated by fluorescence spectroscopy, circular dichroism, nuclear magnetic resonance 15N relaxation experiments, and microsecond molecular dynamics (MD) simulations. RESULTS: TcmN thermal resistance was enhanced at low protein and high salt concentrations, was pH-dependent, and denaturation was irreversible. Conformational dynamics on the µs-ms timescale were detected for residues in the substrate-binding cavity, and two predominant conformers representing opened and closed cavity states were observed in the MD simulations. CONCLUSION: Based on the results, a mechanism was proposed in which the thermodynamics and kinetics of the TcmN conformational equilibrium modulate enzyme function by favoring ligand binding and avoiding aggregation. GENERAL SIGNIFICANCE: Understanding the principles underlying TcmN stability and dynamics may help in designing mutants with optimal properties for biotechnological applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Streptomyces / Proteínas Bacterianas / Policétidos / Complejos Multienzimáticos Idioma: En Revista: Biochim Biophys Acta Gen Subj Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Streptomyces / Proteínas Bacterianas / Policétidos / Complejos Multienzimáticos Idioma: En Revista: Biochim Biophys Acta Gen Subj Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Países Bajos