Your browser doesn't support javascript.
loading
Discussion on "Improving precision and power in randomized trials for COVID-19 treatments using covariate adjustment for binary, ordinal, and time-to-event outcomes".
Proschan, Michael A.
Afiliación
  • Proschan MA; Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases.
Biometrics ; 77(4): 1482-1484, 2021 12.
Article en En | MEDLINE | ID: mdl-34105763
Benkeser et al. present a very informative paper evaluating the efficiency gains of covariate adjustment in settings with binary, ordinal, and time-to-event outcomes. The adjustment method focuses on estimating the marginal treatment effect averaged over the covariate distribution in both arms combined. The authors show that covariate adjustment can achieve power gains that could find answers more quickly. The suggested approach is an important weapon in the armamentarium against epidemics like COVID-19. I recommend evaluating the procedure against more traditional approaches for conditional analyses (e.g., logistic regression) and against blinded methods of building prediction models followed by randomization-based inference.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tratamiento Farmacológico de COVID-19 Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Biometrics Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tratamiento Farmacológico de COVID-19 Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Biometrics Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos