Your browser doesn't support javascript.
loading
Construction of a Cascade Catalyst of Nanocoupled Living Red Blood Cells for Implantable Biofuel Cell.
Chen, Huifeng; Ru, Xiangli; Wang, He; Liu, Peng; Li, Ge; Cao, Ying; Bai, Zhengyu; Yang, Lin.
Afiliación
  • Chen H; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
  • Ru X; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
  • Wang H; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
  • Liu P; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
  • Li G; Department of Mechanical Engineering, University of Alberta, 10-348 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
  • Cao Y; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
  • Bai Z; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
  • Yang L; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Hena
ACS Appl Mater Interfaces ; 13(24): 28010-28016, 2021 Jun 23.
Article en En | MEDLINE | ID: mdl-34101422
The broad applications of implantable glucose biofuel cells (GBFCs) have become very attractive in biomedical sciences. The key challenge of GBFCs is eliminating the inevitable product H2O2 generated from the oxidation of glucose when glucose oxidase (GOx) is used as a catalyst while improving the performance of GBFCs. In this work, the cascade electrocatalyst, RBCs@NPDA was obtained through the in situ polymerization of dopamine to form nanopolydopamine (NPDA) on the surface of red blood cells (RBCs). The RBCs@NPDA can catalyze both fuels of H2O2 and O2, so as to generate a high cathodic current (0.414 mA cm-2). Furthermore, when RBCs@NPDA was used as a cathodic catalyst in the membraneless GBFC, it exhibited the cascade catalytic activity in the reduction of O2-H2O2 and minimized the damage to RBCs caused by the high concentration of H2O2. The mechanism research indicates that RBCs@NPDA integrates the property of NPDA and RBCs. Specifically, NPDA plays a catalase-like role in catalyzing the decomposition of H2O2, while RBCs play a laccase-like role in electrocatalyzing the O2 reduction reaction. This work offers the cascade catalyst for improving the performance of implantable GBFC and presents a strategy for constructing catalysts using living cells and nanomaterials to replace deformable and unstable enzymes in other biofuel cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Fuentes de Energía Bioeléctrica / Eritrocitos / Glucosa / Indoles Límite: Animals Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Fuentes de Energía Bioeléctrica / Eritrocitos / Glucosa / Indoles Límite: Animals Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos