Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat.
Food Chem
; 361: 130154, 2021 Nov 01.
Article
en En
| MEDLINE
| ID: mdl-34077882
The implementation of Raman and infrared spectroscopy with three data fusion strategies to predict pH and % IMF content of red meat was investigated. Raman and FTIR systems were utilized to assess quality parameters of intact red meat. Quantitative models were built using PLS, with model performances assessed with respect to the determination coefficient (R2), root mean square error and normalized root mean square error (NRMSEP). Results obtained on validation against an independent test set show that the high-level fusion strategy had the best performance in predicting the observed pH; with RP2 and NRMSEP values of 0.73 and 12.9% respectively, whereas low-level fusion strategy showed promise in predicting % IMF (NRMSEP = 8.5%). The fusion of data from more than one technique at low and high level resulted in improvement in the model performances; highlighting the possibility of information enhancement.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Espectrometría Raman
/
Espectroscopía Infrarroja por Transformada de Fourier
/
Carne Roja
/
Análisis de los Alimentos
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Food Chem
Año:
2021
Tipo del documento:
Article
País de afiliación:
Nueva Zelanda
Pais de publicación:
Reino Unido