Automatized Hepatic Tumor Volume Analysis of Neuroendocrine Liver Metastases by Gd-EOB MRI-A Deep-Learning Model to Support Multidisciplinary Cancer Conference Decision-Making.
Cancers (Basel)
; 13(11)2021 May 31.
Article
en En
| MEDLINE
| ID: mdl-34072865
BACKGROUND: Rapid quantification of liver metastasis for diagnosis and follow-up is an unmet medical need in patients with secondary liver malignancies. We present a 3D-quantification model of neuroendocrine liver metastases (NELM) using gadoxetic-acid (Gd-EOB)-enhanced MRI as a useful tool for multidisciplinary cancer conferences (MCC). METHODS: Manual 3D-segmentations of NELM and livers (149 patients in 278 Gd-EOB MRI scans) were used to train a neural network (U-Net architecture). Clinical usefulness was evaluated in another 33 patients who were discussed in our MCC and received a Gd-EOB MRI both at baseline and follow-up examination (n = 66) over 12 months. Model measurements (NELM volume; hepatic tumor load (HTL)) with corresponding absolute (ΔabsNELM; ΔabsHTL) and relative changes (ΔrelNELM; ΔrelHTL) between baseline and follow-up were compared to MCC decisions (therapy success/failure). RESULTS: Internal validation of the model's accuracy showed a high overlap for NELM and livers (Matthew's correlation coefficient (φ): 0.76/0.95, respectively) with higher φ in larger NELM volume (φ = 0.80 vs. 0.71; p = 0.003). External validation confirmed the high accuracy for NELM (φ = 0.86) and livers (φ = 0.96). MCC decisions were significantly differentiated by all response variables (ΔabsNELM; ΔabsHTL; ΔrelNELM; ΔrelHTL) (p < 0.001). ΔrelNELM and ΔrelHTL showed optimal discrimination between therapy success or failure (AUC: 1.000; p < 0.001). CONCLUSION: The model shows high accuracy in 3D-quantification of NELM and HTL in Gd-EOB-MRI. The model's measurements correlated well with MCC's evaluation of therapeutic response.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Guideline
/
Prognostic_studies
Idioma:
En
Revista:
Cancers (Basel)
Año:
2021
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Suiza