Your browser doesn't support javascript.
loading
Automatized Hepatic Tumor Volume Analysis of Neuroendocrine Liver Metastases by Gd-EOB MRI-A Deep-Learning Model to Support Multidisciplinary Cancer Conference Decision-Making.
Fehrenbach, Uli; Xin, Siyi; Hartenstein, Alexander; Auer, Timo Alexander; Dräger, Franziska; Froböse, Konrad; Jann, Henning; Mogl, Martina; Amthauer, Holger; Geisel, Dominik; Denecke, Timm; Wiedenmann, Bertram; Penzkofer, Tobias.
Afiliación
  • Fehrenbach U; Department of Radiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Xin S; Division of Gastroenterology, Medical Department, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
  • Hartenstein A; Department of Radiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Auer TA; Bayer AG, 13353 Berlin, Germany.
  • Dräger F; Department of Radiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Froböse K; Berlin Institute of Health, 10178 Berlin, Germany.
  • Jann H; Department of Radiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Mogl M; Department of Radiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Amthauer H; Division of Gastroenterology, Medical Department, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
  • Geisel D; Department of Surgery Campus Charité Mitte/Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
  • Denecke T; Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Wiedenmann B; Department of Radiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
  • Penzkofer T; Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, 04103 Leipzig, Germany.
Cancers (Basel) ; 13(11)2021 May 31.
Article en En | MEDLINE | ID: mdl-34072865
BACKGROUND: Rapid quantification of liver metastasis for diagnosis and follow-up is an unmet medical need in patients with secondary liver malignancies. We present a 3D-quantification model of neuroendocrine liver metastases (NELM) using gadoxetic-acid (Gd-EOB)-enhanced MRI as a useful tool for multidisciplinary cancer conferences (MCC). METHODS: Manual 3D-segmentations of NELM and livers (149 patients in 278 Gd-EOB MRI scans) were used to train a neural network (U-Net architecture). Clinical usefulness was evaluated in another 33 patients who were discussed in our MCC and received a Gd-EOB MRI both at baseline and follow-up examination (n = 66) over 12 months. Model measurements (NELM volume; hepatic tumor load (HTL)) with corresponding absolute (ΔabsNELM; ΔabsHTL) and relative changes (ΔrelNELM; ΔrelHTL) between baseline and follow-up were compared to MCC decisions (therapy success/failure). RESULTS: Internal validation of the model's accuracy showed a high overlap for NELM and livers (Matthew's correlation coefficient (φ): 0.76/0.95, respectively) with higher φ in larger NELM volume (φ = 0.80 vs. 0.71; p = 0.003). External validation confirmed the high accuracy for NELM (φ = 0.86) and livers (φ = 0.96). MCC decisions were significantly differentiated by all response variables (ΔabsNELM; ΔabsHTL; ΔrelNELM; ΔrelHTL) (p < 0.001). ΔrelNELM and ΔrelHTL showed optimal discrimination between therapy success or failure (AUC: 1.000; p < 0.001). CONCLUSION: The model shows high accuracy in 3D-quantification of NELM and HTL in Gd-EOB-MRI. The model's measurements correlated well with MCC's evaluation of therapeutic response.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Cancers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Cancers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza