Empirical Overview of Benchmark Datasets for Geomagnetic Field-Based Indoor Positioning.
Sensors (Basel)
; 21(10)2021 May 19.
Article
en En
| MEDLINE
| ID: mdl-34069507
Indoor positioning and localization have been regarded as some of the most widely researched areas during the last decade. The wide proliferation of smartphones and the availability of fast-speed internet have initiated several location-based services. Concerning the importance of precise location information, many sensors are embedded into modern smartphones. Besides Wi-Fi positioning, a rich variety of technologies have been introduced or adopted for indoor positioning such as ultrawideband, infrared, radio frequency identification, Bluetooth beacons, pedestrian dead reckoning, and magnetic field, etc. However, special emphasis is put on infrastructureless approaches like Wi-Fi and magnetic field-based positioning, as they do not require additional infrastructure. Magnetic field positioning is an attractive solution for indoors; yet lack of public benchmarks and selection of suitable benchmarks are among the big challenges. While several benchmarks have been introduced over time, the selection criteria of a benchmark are not properly defined, which leads to positioning results that lack generalization. This study aims at analyzing various public benchmarks for magnetic field positioning and highlights their pros and cons for evaluation positioning algorithms. The concept of DUST (device, user, space, time) and DOWTS (dynamicity, orientation, walk, trajectory, and sensor fusion) is introduced which divides the characteristics of the magnetic field dataset into basic and advanced groups and discusses the publicly available datasets accordingly.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Sensors (Basel)
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Suiza