Representative Bacillus sp. AM1 from Gut Microbiota Harbor Versatile Molecular Pathways for Bisphenol A Biodegradation.
Int J Mol Sci
; 22(9)2021 May 07.
Article
en En
| MEDLINE
| ID: mdl-34066922
Human gut microbiota harbors numerous microbial species with molecular enzymatic potential that impact on the eubiosis/dysbiosis and health/disease balances. Microbiota species isolation and description of their specific molecular features remain largely unexplored. In the present study, we focused on the cultivation and selection of species able to tolerate or biodegrade the endocrine disruptor bisphenol A (BPA), a xenobiotic extensively found in food plastic containers. Chemical xenobiotic addition methods for the directed isolation, culturing, Whole Genome Sequencing (WGS), phylogenomic identification, and specific gene-encoding searches have been applied to isolate microorganisms, assess their BPA metabolization potential, and describe encoded catabolic pathways. BPA-tolerant strains were isolated from 30% of infant fecal microbial culture libraries analyzed. Most isolated strains were phylogenetically related to the operational taxonomic group Bacillus amyloliquefaciens spp. Importantly, WGS analysis of microbial representative strain, Bacillus sp. AM1 identified the four complete molecular pathways involved on BPA degradation indicating its versatility and high potential to degrade BPA. Pathways for Exopolysaccharide (EPS) and Polyhydroxyalkanates (PHA) biopolymer synthesis were also identified and phenotypically confirmed by transmission electronic microscopy (TEM). These microbial biopolymers could generally contribute to capture and/or deposit xenobiotics.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Fenoles
/
Bacillus
/
Compuestos de Bencidrilo
/
Transducción de Señal
/
Microbioma Gastrointestinal
Límite:
Humans
Idioma:
En
Revista:
Int J Mol Sci
Año:
2021
Tipo del documento:
Article
País de afiliación:
España
Pais de publicación:
Suiza