Your browser doesn't support javascript.
loading
A machine-learning-based alloy design platform that enables both forward and inverse predictions for thermo-mechanically controlled processed (TMCP) steel alloys.
Lee, Jin-Woong; Park, Chaewon; Do Lee, Byung; Park, Joonseo; Goo, Nam Hoon; Sohn, Kee-Sun.
Afiliación
  • Lee JW; Nanotechnology & Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, South Korea.
  • Park C; Nanotechnology & Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, South Korea.
  • Do Lee B; Nanotechnology & Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, South Korea.
  • Park J; Nanotechnology & Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, South Korea.
  • Goo NH; Advanced Research Team, Hyundai Steel DangJin Works, DangJin, Chungnam, 31719, South Korea.
  • Sohn KS; Nanotechnology & Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, South Korea. kssohn@sejong.ac.kr.
Sci Rep ; 11(1): 11012, 2021 05 26.
Article en En | MEDLINE | ID: mdl-34040040
Predicting mechanical properties such as yield strength (YS) and ultimate tensile strength (UTS) is an intricate undertaking in practice, notwithstanding a plethora of well-established theoretical and empirical models. A data-driven approach should be a fundamental exercise when making YS/UTS predictions. For this study, we collected 16 descriptors (attributes) that implicate the compositional and processing information and the corresponding YS/UTS values for 5473 thermo-mechanically controlled processed (TMCP) steel alloys. We set up an integrated machine-learning (ML) platform consisting of 16 ML algorithms to predict the YS/UTS based on the descriptors. The integrated ML platform involved regularization-based linear regression algorithms, ensemble ML algorithms, and some non-linear ML algorithms. Despite the dirty nature of most real-world industry data, we obtained acceptable holdout dataset test results such as R2 > 0.6 and MSE < 0.01 for seven non-linear ML algorithms. The seven fully trained non-linear ML models were used for the ensuing 'inverse design (prediction)' based on an elitist-reinforced, non-dominated sorting genetic algorithm (NSGA-II). The NSGA-II enabled us to predict solutions that exhibit desirable YS/UTS values for each ML algorithm. In addition, the NSGA-II-driven solutions in the 16-dimensional input feature space were visualized using holographic research strategy (HRS) in order to systematically compare and analyze the inverse-predicted solutions for each ML algorithm.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Reino Unido